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Abstract

Because of the uncertain irregular microgeometry, a random polycrystalline aggregate (the shape and crystalline

orientations of the constituent anisotropic grains of which are uncorrelated) may have elastic moduli scattered over

some, though small, intervals, while the conventional macroscopic homogeneity and isotropy hypotheses for it may

be considered only as approximate with corresponding uncertainty. Our formal bounds are proposed to provide the

estimates on those uncertainties in asymptotic sense. Explicit expressions for the aggregates of trigonal crystals (classes

3m, 32, �33m) are derived.
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1. Introduction

Many technical homogeneous and isotropic materials with tabulated macroscopic elastic moduli

(measured directly from experiments) on microscopic scale are random polycrystalline aggregates. Macro-

scopic (effective) properties of those aggregates depend upon the properties of the base crystal as well as the

polycrystalline microgeometry. In polycrystal forming processes, the constituent crystals are often formed

independently at random places and grow till they meet each other. The kinematic constraints, boundary

traction, friction, and inertia would not allow the crystals to turn over and fit together to make a con-
figuration with minimal surface energy (as to form a single big crystal), but leave the primary crystalline

orientations of the grains intact and accommodate them with the help of various defects on their common

boundary (such as dislocation walls...). Hence it appears that the shape and crystalline orientations of the

constituent grains in a random aggregate are uncorrelated. There may be competing tendency to some local

correlation due to surface energy and anisotropic structure of the crystals; however, overall disorder and

randomness seems to prevail and the randomness hypotheses can be considered as good approximation in

many cases. This randomness makes the aggregate�s effective moduli isotropic and so definite that they can
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be tabulated for applications, while all possible artificial well-ordered combinations of crystals may have a

wide range of macroscopic properties including the same anisotropic ones as those of the base crystal

(Avellaneda et al., 1988; Milton and Kohn, 1988; Avellaneda and Milton, 1989). Simple arithmetic (Voigt,

1928) and harmonic (Reuss, 1929) averages, or more sophisticated self-consistent approximations
(Bruggeman, 1935; Landauer, 1952; Sermergor, 1977; Kr€ooner, 1980; Norris, 1985; Pham, 1998; Pham and

Phan-Thien, 1998) are often used to relate the grains� and aggregate�s properties. However no available

formula can give the precise value of a macroscopic property of a random polycrystal, except for very few

cases where a property is independent of aggregate�s geometry. The irregular and random nature of

polycrystalline microgeometry makes the mathematical problem of finding the exact values of the effective

moduli intractable. In addition, contrary to the conventional viewpoint, the effective properties of a random

polycrystal may be not unique to be determined even in principle. There is no mathematical proof of

uniqueness of elastic moduli of a random polycrystal, though one often takes it as a hypothesis. Available
experimental data seem only to suggest that the polycrystalline material moduli are close to be unique such

that they can be tabulated for technical uses (as certain numbers with just a few significant digits). Hence, in

addition to the approximation schemes, the more refined approach to the problem is to construct upper and

lower bounds on the possible values of the effective properties (Hill, 1952; Hashin and Shtrikman, 1962;

Beran, 1968; Miller, 1969; Silnutzer, 1972; Zeller and Dederichs, 1973; Elsayed, 1974; Sermergor, 1977;

Williemse and Caspers, 1979; McCoy, 1981; Phan-Thien and Milton, 1983; Pham, 1993, 1994, 1996, 1997,

2000a,b, 2001; Pham and Phan-Thien, 1998). A strategy to derive the bounds is to substitute appropriately

constructed trial strain and stress fields into the minimum energy and complementary energy principles,
exploring statistical hypotheses for a random aggregate. Our formal bounds (Pham, 2000b) appear the

tightest available ones for the elastic moduli of a completely random polycrystal. They will be presented in

the condensed form in the next section. In Section 3 we derive particular expressions of the bounds for the

aggregates of trigonal crystals (classes 3m, 32, �33m). A compromise in interpreting the bounds as the measure

of uncertainty in observed elastic moduli of a random polycrystal will be presented in the last section.
2. Upper and lower bounds

In Pham (1993, 1997, 2000b) we consider a random polycrystal as a multicomponent material, each

component of which is composed of the crystals of the same crystalline orientation (the number of the

equal-volume components increase afterward to infinity to cover all possible orientations). The bounds are

deduced from the minimum energy and complementary energy principles by substituting in them polari-

zation trial fields (9)–(11) and (20)–(21) of Pham (2000b)––similar to those fields of Hashin and Shtrikman

(1962); however, we do not use Hashin–Shtrikman specific variational principles. To evaluate the bounds,

we presume the statistical isotropy and symmetry hypotheses (5) and (19) of Pham (1997): Statistical
isotropy hypothesis (needed also for derivation of Hashin–Shtrikman bounds) requires that certain tensor

integrals formed from spacial differentiation of harmonic potentials of unit density taken upon components�
geometry of the aggregate be isotropic. Statistical symmetry hypothesis requires that an interchange of the

spaces between any two components of different crystalline orientations should not alter overall charac-

teristics of the random polycrystal. Alternative hypotheses on symmetric cell polycrystals having a similar

sense have been taken in Williemse and Caspers (1979), Pham (2000a).

Let C denote the fourth-rank elasticity tensor of the base crystal of a polycrystal with components Cijkl;

Ce––the effective elasticity tensor defined on an aggregate representative element (in large limit compared to
the sizes of the constituent grains such that no size effect could be presented). The formal bounds on Ce can

be given in the form (Pham, 2000b)
e : PðC;C�Þ : e P e : Ce : e P e : PðC; �CC�Þ : e ð1Þ



D.C. Pham / International Journal of Solids and Structures 40 (2003) 4911–4924 4913
for all symmetric second-rank strain tensor e, where
PðC;C�Þ ¼ TðPk; PlÞ;
PkðC;C�Þ ¼ ½ðCþ C�Þ�1

iijj�
�1 � k�;

PlðC;C�Þ ¼ 2
5
ðC

h
þ C�Þ�1

ijij � 2
15
ðCþ C�Þ�1

iijj

i�1

� l�;

ð2Þ

C� ¼ Tðk�; l�Þ; k� ¼
4

3
l0; l� ¼ l0

9k0 þ 8l0

6k0 þ 12l0

;

�CC� ¼ Tð�kk�; �ll�Þ; �kk� ¼
4

3
�ll0; �ll� ¼ �ll0

9�kk0 þ 8�ll0

6�kk0 þ 12�ll0

;

ð3Þ
Tðk; lÞ is the isotropic fourth-rank tensor function with the components
Tijklðk; lÞ ¼ ðk � 2
3
lÞdijdkl þ lðdikdjl þ dildjkÞ; ð4Þ
dij is usual Kronecker symbol, conventional summation on repeating indices is assumed, and ðCþ C�Þ�1

ijkl

denote the components of the tensor ðCþ C�Þ�1
. If the effective elasticity tensor Ce is taken definitely as

isotropic, then it can be represented through the bulk ðkeÞ and shear ðleÞ moduli:
Ce ¼ Tðke; leÞ: ð5Þ

Besides the base crystal elasticity tensor C, the above bounds contain the free parameters k0, l0 for the

upper bounds and �kk0, �ll0 for the lower bounds. The parameters k0, l0 for the upper bounds are restricted by
k0 P kV; l0 P lV ð6Þ

and
UKðC; k0; l0Þ6 0; ð7Þ

UMðC; k0; l0Þ � 1
3
UKðC; k0; l0Þ6 0; ð8Þ
where kV and lV are Voigt�s arithmetic average values
kV ¼ 1
9
Ciijj; lV ¼ 1

10
Cijij � 1

30
Ciijj: ð9Þ
The expressions of UK and UM are given in Appendix A ((A.1)–(A.4)). The best upper bounds are obtained

when the free parameters k0 and l0 restricted by (6)–(8) are chosen such as to make the upper bounds in (1)

as small as possible.

The parameters �kk0, �ll0 for the lower bounds are restricted by
�kk�1
0 P k�1

R ; �ll�1
0 P l�1

R ; ð10Þ
and
�UUKðC; �kk0; �ll0Þ6 0; ð11Þ

�UUMðC; �kk0; �ll0Þ � 1
3
�UUKðC; �kk0; �ll0Þ6 0; ð12Þ
where kR and lR are Reuss� harmonic average values
kR ¼ ½ðCÞ�1

iijj�
�1
; lR ¼ 2

5
ðCÞ�1

ijij

h
� 2

15
ðCÞ�1

iijj

i�1

; ð13Þ
�UUK and �UUM have the same forms as UK and UM in (A.1) and (A.2) with �CC�0, �hh and �DD taking the places of

C�0, h and D, respectively (see also (A.5)–(A.7) of Appendix A).
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The best lower bounds are obtained when the free parameters �kk0, �ll0 restricted by (10)–(12) are chosen

such as to make the lower bounds in (1) as large as possible.

One defines an interesting subclass of idealized spherical cell polycrystals, which are supposed to be

composed exclusively from crystals of spherical forms and different sizes distributed randomly (Miller,
1969; Silnutzer, 1972; Zeller and Dederichs, 1973; Williemse and Caspers, 1979; Pham, 1996, 1997; Pham

and Phan-Thien, 1998). The subclass is supposed to approximate practical equiaxed particulate aggregates.

The bounds for them are especially simple, which have the structure (1)–(3) with the parameters k0, l0 (for

the upper bounds) and �kk0, �ll0 (for the lower bounds) coinciding with Voigt and Reuss averages, respectively
k0 ¼ kV; l0 ¼ lV; �kk0 ¼ kR; �ll0 ¼ lR: ð14Þ

Hashin and Shtrikman (1962) bounds may also be expressed as (1)–(3) with k0, l0, and �kk0, �ll0 being re-

stricted by
e : ðC� C0Þ : e6 0; r : ½C�1 � ð�CC0Þ�1� : r6 0 ð15Þ

for all possible second rank symmetric tensors e and r.

The self-consistent approximation ks, ls for the aggregate moduli is the solution of the self-consistent

equations
ks ¼ PkðC;C�sÞ; ls ¼ PlðC;C�sÞ;

C�s ¼ Tðk�s; l�sÞ; k�s ¼
4

3
ls; l�s ¼ ls

9ks þ 8ls

6ks þ 12ls
:

ð16Þ
3. The aggregate of trigonal crystals

The elastic tensor of trigonal crystals of classes 3m, 32, �33m in its base crystal reference is expressed

through six elastic constants, which in the two-index notation are given as C11, C12, C13, C14, C33, C44. The

correspondence between the usual fourth-rank elasticity tensor components Cijkl and those in the two-index

notation is
C11 ¼ C1111 ¼ C2222; C33 ¼ C3333; C44 ¼ C1313 ¼ C2323;

C13 ¼ C1133 ¼ C2233; C12 ¼ C1122; C1212 ¼ 1
2
ðC11 � C12Þ;

C14 ¼ C1123 ¼ �C2223 ¼ C1312:

ð17Þ
Voigt and Reuss averages from (8) and (13) have particular forms
kV ¼ 1
9
ð2C11 þ 2C12 þ 4C13 þ C33Þ;

lV ¼ 1
30
ð7C11 � 5C12 � 4C13 þ 2C33 þ 12C44Þ;

kR ¼ ðC11 þ C12ÞC33 � 2C2
13

C11 þ C12 � 4C13 þ 2C33

;

lR ¼ 15

2

2C11 þ 2C12 þ 4C13 þ C33

C33ðC11 þ C12Þ � 2C2
13

�
þ 3C11 � 3C12 þ 6C44

C44ðC11 � C12Þ � 2C2
14

��1

:

ð18Þ
The property functions Pk and Pl from (2) become
Pkðk�; l�Þ ¼
ðCþ�

11 þ Cþ�
12 ÞCþ�

33 � 2ðCþ�
13 Þ

2

Cþ�
11 þ Cþ�

12 � 4Cþ�
13 þ 2Cþ�

33

� k�; ð19Þ
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Plðk�; l�Þ ¼
15

2

2Cþ�
11 þ 2Cþ�

12 þ 4Cþ�
13 þ Cþ�

33

Cþ�
33 ðCþ�

11 þ Cþ�
12 Þ � 2ðCþ�

13 Þ
2

"
þ 3Cþ�

11 � 3Cþ�
12 þ 6Cþ�

44

Cþ�
44 ðCþ�

11 � Cþ�
12 Þ � 2C2

14

#�1

� l�; ð20Þ
where
Cþ�
11 ¼ C11 þ k� þ 4

3
l�; Cþ�

33 ¼ C33 þ k� þ 4
3
l�; Cþ�

44 ¼ C44 þ l�;

Cþ�
12 ¼ C12 þ k� � 2

3
l�; Cþ�

13 ¼ C13 þ k� � 2
3
l�:

ð21Þ
The bounds for the specific spherical cell polycrystals are simple
ku
s P ke P kl

s; lu
s P le P ll

s; ð22Þ
where
ku
s ¼ Pkðk�; l�Þ; lu

s ¼ Plðk�; l�Þ;
kl
s ¼ Pkð�kk�; �ll�Þ; ll

s ¼ Plð�kk�; �ll�Þ;
ð23Þ
with k�, l�,
�kk�, �ll� being determined by (3) and (14).

To derive the general shape-independent bounds for the elastic moduli, we must calculate the compo-

nents Dijkl from (A.4). These results are given in (B.1)–(B.3) of Appendix B. From (B.1) one can verify that
D11 þ D12 þ D13 ¼ �1
2
ðD33 þ 2D31Þ; D11 þ D12 þ D31 ¼ �1

2
ðD33 þ 2D13Þ: ð24Þ
Substituting (B.1) into (A.1) and taking into account (24), after some algebra we obtain
UK ¼ 1
2
ðD33 þ 2D31Þ2QðC�0

ij ; k0; l0Þ; ð25Þ
where
QðC�0
ij ; k0; l0Þ ¼

3h2

35
ð3C�0

11 � C�0
12 þ C�0

33 þ 4C�0
44 Þ �

2h
35

ðC�0
11 þ C�0

12 þ 5C�0
13 þ 2C�0

33 Þ

þ 4h2

35

�
� 4h

35
þ 1

10

�
3

2
C�0

11

�
� 1

2
C�0

12 þ 2C�0
33 þ 5C�0

44

�
þ 1

10

�
� 4h

35

�

	 3

2
C�0

11

�
� 1

2
C�0

12 þ 2C�0
33 � 4C�0

44

�
þ h2

75

�
þ 8h

105
� 1

15

�
ðC�0

11 þ C�0
12 � 4C�0

13 þ 2C�0
33 Þ;

ð26Þ

C�0
11 ¼ C11 � k0 � 4

3
l0; C�0

33 ¼ C33 � k0 � 4
3
l0; C�0

44 ¼ C44 � l0;

C�0
12 ¼ C12 � k0 þ 2

3
l0; C�0

13 ¼ C13 � k0 þ 2
3
l0:

ð27Þ
The best shape-independent upper bound on the aggregate bulk modulus is
ke 6 ku; ð28Þ

where
ku ¼ inf
k0;l0

fPkðk�; l�Þjk0 P kV; l0 P lV;QðC�0
ij ; k0;l0Þ6 0g: ð29Þ
For numerical implementation of (29), we just increase k0 and l0, respectively, from kV and lV until we get

Q6 0.

The best shape-independent upper bound on the shear modulus is
le 6 lu; ð30Þ
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where
Table

The el

MgC

CaC

Bi

Al2O

SiO

AlP

Sb

Bi2T

CdI

CrO

Fe2O

FeB

PbI

LiT

KBr

Se

Te

As
lu ¼ inf
k0;l0

Plðk�; l�Þjk0

	
P kV; l0 P lV;UM � 1

3
UK 6 0



; ð31Þ
UM is given by Eq. (B.4) of Appendix B.

Similarly, the best shape-independent lower bound on the bulk modulus is
ke P kl; ð32Þ
where
kl ¼ sup
�kk0;�ll0

fPkð�kk�; �ll�Þj�kk�1
0 P k�1

R ; �ll�1
0 P l�1

R ; �QQð�CC�0
ij
�kk0; �ll0Þ6 0g ð33Þ
and the lower bound on the shear modulus is
le P ll; ð34Þ
where
ll ¼ sup
�kk0;�ll0

fPlð�kk�; �ll�Þj�kk�1
0 P k�1

R ; �ll�1
0 P l�1

R ; �UUM � 1
3
�UUK 6 0g; ð35Þ
�QQ and �UUM have the same forms as Q from (26) and UM from (B.4) with �hh, �CC�0
ij and �DDij (see (B.5)–(B.11) of

Appendix B) taking the places of h, C�0
ij and Dij, respectively.

Numerical results for the elastic moduli of the random aggregates of the trigonal crystals, the elastic

constants of which are taken from Landolt-B€oornstein (1979) (Table 1), are presented in Tables 2 and 3. The

tabulated general shape-independent bounds (28)–(31) and (32)–(35), the bounds for specific spherical cell

polycrystals (22) and (23), and the self-consistent values (16) are rounded to four significant digits. Hashin–

Shtrikman bounds calculated in Watt and Peselnick (1980) are also included for a comparison. The rela-

tively complicated general shape-independent bounds do not differ very much from the much simpler

bounds for the specific spherical cell polycrystals (22), (23) and (14), which approximate practical equi-axed
1

astic constants (in GPa) of trigonal crystals (classes 3m; 32; �33m)

C11 C33 C44 C12 C13 C14

O3 259 156 54.8 75.6 58.8 )19.0

O3 144.5 83.1 32.65 57.1 53.4 )20.5

63.7 38.2 11.23 24.9 24.7 7.17

3 496.8 498.1 147.4 163.6 110.9 )23.5

2 86.87 105.74 58.18 7.09 11.92 )18.04

O4 105 134 23.1 29.3 69.3 )12.7

101 44.8 39.6 31.4 27.0 22.1

e3 68.5 47.7 27.4 21.8 27.0 13.2

2 43.1 22.5 5.5 20.4 8.9 0

3 374 362 159 148 175 )19

3 242 228 85.3 54.9 15.7 )12.7

O3 445 305 95 145 140 20

2 27.7 20.2 6.2 9.6 11.3 3.0

aO3 230 276 95.9 42 79 )11

O3 43.1 23.6 16.6 14.4 15.5 )0.34

18.6 76.1 14.8 7.3 25.2 5.6

34.4 70.8 32.7 9.0 24.9 13.1

130 58.7 22.5 30.3 64.3 )3.7



Table 2

The upper and lower bounds on the polycrystalline elastic bulk modulus: ku
HS; k

l
HS––Hashin–Shtrikman bounds; ku; kl––the shape-

independent bounds; ku
s ; k

l
s––the bounds for spherical cell polycrystals; ks––self-consistent value (in GPa); Sk ¼ ðku � klÞ=ðku þ klÞ––the

scatter measure

kl
HS kl kl

s ks ku
s ku ku

HS Sk

MgCO3 113.2 113.8 113.9 114.0 114.1 114.1 114.5 0.0014

CaCO3 74.4 74.85 74.93 75.14 75.35 75.35 75.9 0.0033

Bi 33.7 33.84 33.87 33.95 34.01 34.01 34.2 0.0025

Al2O3 251.1 251.1 251.1 251.1 251.1 251.1 251.1 0.00001

SiO2 37.6 37.67 37.67 37.68 37.68 37.69 37.7 0.00021

AlPO4 71.75 71.77 72.00 72.23 72.23 0.0033

Sb 43.03 43.17 43.49 43.82 43.82 0.0092

Bi2Te3 37.07 37.08 37.10 37.12 37.12 0.00064

CdI2 18.70 18.73 18.79 18.86 18.86 0.0042

CrO3 234.0 234.0 234.0 234.0 234.0 0

Fe2O3 97.77 97.77 97.78 97.78 97.78 0.00003

FeBO3 223.7 223.8 223.8 223.9 223.9 0.00045

PbI2 15.45 15.45 15.46 15.46 15.46 0.00035

LiTaO3 124.8 124.8 124.8 124.8 124.8 0.00010

KBrO3 21.61 21.66 21.69 21.70 21.70 0.0022

Se 13.84 13.84 15.30 16.96 17.58 0.12

Te 24.66 24.66 25.18 25.71 25.80 0.023

As 66.76 67.53 69.01 69.31 69.31 0.019

Table 3

The upper and lower bounds on the polycrystalline elastic shear modulus: lu
HS; l

l
HS––Hashin–Shtrikman bounds; lu;ll––the shape-

independent bounds; lu
s ; l

l
s––the bounds for spherical cell polycrystals; ls––self-consistent value (in GPa); Sl ¼ ðlu � llÞ=ðlu þ llÞ––

the scatter measure

ll
HS ll ll

s ls lu
s lu lu

HS Sl

MgCO3 67.1 67.78 67.78 67.91 68.03 68.04 68.5 0.0019

CaCO3 29.1 29.93 29.93 30.28 30.62 30.64 31.7 0.012

Bi 12.0 12.37 12.37 12.49 12.60 12.61 13.0 0.0096

Al2O3 163.2 163.4 163.4 163.4 163.5 163.5 163.7 0.00013

SiO2 43.5 44.01 44.01 44.11 44.22 44.26 44.9 0.0028

AlPO4 24.96 24.96 25.14 25.32 25.32 0.0072

Sb 26.11 26.12 26.63 27.21 27.25 0.021

Bi2Te3 19.26 19.26 19.43 19.63 19.65 0.010

CdI2 8.448 8.448 8.472 8.498 8.498 0.0029

CrO3 123.1 123.1 123.1 123.2 123.2 0.00045

Fe2O3 93.08 93.09 93.10 93.11 93.11 0.00012

FeBO3 115.0 115.0 115.1 115.1 115.1 0.00069

PbI2 6.532 6.532 6.554 6.577 6.578 0.0035

LiTaO3 92.06 92.06 92.07 92.07 92.07 0.00006

KBrO3 13.07 13.14 13.17 13.18 13.18 0.0042

Se 6.722 6.748 7.250 7.817 7.817 0.075

Te 14.12 14.15 14.84 15.61 15.66 0.052

As 18.69 19.81 22.91 23.73 23.73 0.12
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particulate aggregates. Hence, the latter may give good estimation of the scatter ranges for many practical

polycrystalline aggregates and can be recommended for practical use. Note that they are even simpler than

the less tight Hashin-Shtrikman bounds.
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4. The uncertainty and asymptotic estimates

As stated in Section 1, there are no mathematical or experimental proofs of the conventional assumption

that the effective moduli of a particular random polycrystalline material should be unique. On the contrary,
because of the irregular microgeometry, the effective properties of a random polycrystalline material may be

not unique, and two different representative elements (in large limit compared to the sizes of constituent

grains) of the same polycrystalline material may have slightly different effective properties (because they do

not have identical microgeometry). We presume our bounds provide these possible scatter ranges of the

effective moduli. Once the effective moduli of a random polycrystal are not unique, the macroscopic homo-

geneity and isotropy hypotheses for it are not exact anymore and can be considered only as approximate.

So in this sense, at least as a conservative measure, we should abandon the precise isotropy statement (5)

and come to the general inequalities (1) where Ce can be slightly anisotropic (of all possible kinds) as
allowed by the bounds. Hence, the shape-independent bounds (28), (30), (32) and (34) should be under-

stood as
e : Tðku; luÞ : e P e : Ce : e P e : Tðkl; llÞ : e ð8 symmetric eÞ: ð36Þ

However the particular expressions of the upper and lower bounds ku, lu, kl, ll themselves have been

derived using mathematical expressions of statistical isotropy and symmetry hypotheses, which are sup-

posed to be not exact but approximate. This means the bounds are not rigorous and could be violated by
the effective moduli. Still, they can be interpreted in ‘‘extended asymptotical sense’’ as follows.

As the size of the scatter range of the bounds (36) we take
S ¼ maxfSk; Slg;
Sk ¼ ðku � klÞ=ðku þ klÞ; Sl ¼ ðlu � llÞ=ðlu þ llÞ:

ð37Þ
The respective size of the scatter range of the respective bounds for specific spherical cell polycrystals is
designated as Ss.

It appears that the scatter measures of our bounds are small for considered polycrystalline materials, in

particular S, Ss � 1. We have known that, in asymptotic sense, the bounds for spherical cell polycrystals

are third order in the base crystal elasticity anisotropy contrast for an expansion around a homogeneity

(with the respective range size Ss), while the Voigt–Reuss–Hill bounds are first order (hence, with the range

size equivalent to S1=3
s ), and Hashin–Shtrikman bounds are second order (with the measure equivalent to

S2=3
s ). The shape-independent bounds (36) are partly third order (with the measure S P Ss)––but close to Ss

as we have seen in the previous section.
Because the statistical isotropy and other hypotheses used for derivation of the bounds (36) may be not

exact, the bounds may be considered only as approximate in asymptotic sense as follows. Presume the

accuracy of the hypotheses is about the amount S, as suggested by the bounds. The lowest order terms in

the expressions of the upper and lower bounds, where the isotropy hypothesis has been applied to evaluate,

are the second order ones (equivalent to S2=3
s ), in particular the terms involving the approximations (3) of

Pham (1997). This leads subsequently to the possible errors of about S � S2=3
s for the expressions of the

shape-independent bounds (or about fifth order Ss � S2=3
s ¼ S5=3

s in the spherical cell polycrystal case). Say,

the effective moduli may be even larger (smaller) than the derived upper (lower) bounds by these small
amounts. Then we have the relative possible error r ¼ S � S2=3

s =S ¼ S2=3
s for the derived scatter range S (the

same error expression for Ss). Thus the bounds may give reliable prediction of the uncertainty interval S
(and Ss) only under the condition that this relative error r is small:
r ¼ S2=3
s � 1: ð38Þ
Roughly speaking the effective properties may have values higher than the upper bounds, or lower than

the lower bounds by amounts small compared to the distances between the bounds if r is small. The bounds
become not rigorous mathematically and should be understood in this extended asymptotic sense.
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As S, Ss increase, r increases correspondingly toward 1, so the magnitudes of the errors may become

comparable to the intervals between the bounds, invalidating the practical significance of the bounds. In

other words, the bounds would be useful only when they are sufficiently narrow, while when they are wide,

the effective moduli may correspondingly fall far outside if one does not presume, in addition, that the real
scatter range should be much smaller than the interval between the obtained bounds. In that case the

bounds become poor predictor and may have only some mathematical, not practical, value! The scatter

measures Sk, Sl calculated for the particular crystals in Tables 2 and 3 are rounded to five decimal places, or

two significant figures. They appear to be rather small. For most of them r6 S2=3 is only about a few

thousandths, so the obtained numerical results can be considered as reliable in predicting scatter ranges.

One may suggest that narrower bounds could be derived if higher-order correlation information about

the aggregate geometry is incorporated. However, like the effective moduli of a random polycrystal are not

unique, the high order correlation functions may also be not unique and can only be determined with some
uncertainty, while the amounts of these uncertainties may increase for higher order correlation information.

If the uncertainties of the lower order statistical information, as the isotropy and homogeneity hypotheses,

should be indeed as large as comparable to the scatter intervals predicted by our bounds, then the higher

order correlation functions with corresponding (increasing) uncertainties may add little or nothing to

improve the bounds. Alternatively, if the uncertainties of observed macroscopic moduli of a random

polycrystal should indeed be much smaller than the intervals predicted by our bounds, then the accuracy of

the isotropy and homogeneity hypotheses should be higher than that given by our bounds (36), while the

accuracy of our bounds (in mathematical sense) should be better in the sense that the derived bounds may
be violated by amounts much smaller than those indicated above. However the bounds then become of less

use because they predict some too wide intervals, not the good estimation of real uncertainties. In that case,

we need to incorporate new realistic hypotheses to improve the bounds accordingly and drastically. At

present we do not see any such mathematical possibility. The derived bounds are about third order, and our

and other authors� works show that one cannot go further than third order bounds without specifying

shape and packing information about the microgeometry of a random aggregate (beside the random

hypotheses), but such information is unlikely to be definite, even in principle, for a real-world random

polycrystal with irregular microgeometry, not saying about our ability to find such information. Precise
experiments should provide an answer to this question. In this respect we may cite the experimental data

collected in Warra et al. (1977), Kr€ooner (1980) to check if the measured macroscopic elastic moduli of

random polycrystalline materials should be concentrated toward the self-consistent values. Instead, the

authors observe that the macroscopic moduli scatter almost uniformly over an interval comparable to that

of the third order bounds––the fact agrees qualitatively with the prediction of our shape-independent nearly

third order bounds, though it does not provide direct verification of our bounds, which require experi-

mental data of many samples for every particular polycrystalline material, not the average value. Our

calculated bounds for a number of polycrystals, including those collected in Tables 2 and 3 of this paper,
indicate that one may determine the macroscopic elastic moduli of most materials with the accuracy only

up to from 2 to 4 significant digits (measured values with higher number of digits might be subjected to

fluctuations from sample to sample as allowed by the bounds). Note that tabulated elastic moduli of

technical polycrystalline materials are often given only with very few significant digits. Apart from possible

impurities, technological and measurement factors, the fluctuations caused by the ‘‘uncertainty of the

random nature’’ described in this paper might play a major role.

One can also think of some numerical experiments: e.c. Voronoi tessellation of space with respect to a set

of points thrown randomly and then assigning each cell a random orientation of the base crystal. This
model may be used to test the uniqueness of the elastic moduli and the possible scatter ranges for a random

polycrystal. We expect the calculated effective moduli would scatter (fluctuate from one realization to

another) as predicted by the bounds. However the solution of the elastic equilibrium equations on huge

representative elements with irregular microgeometry, together with high accuracy requirements, makes the
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problem a formidable task. At present we think direct experimental verifications are more feasible. It

should be noted in addition that some idealistic random cell models have been constructed, which have the

effective properties covering large proportions of the intervals within our bounds (Pham, 1998; Pham and

Phan-Thien, 1998).
In conclusion, our view is that the effective elastic moduli of a random polycrystalline material are not

unique, the homogeneity and isotropy hypotheses for it are not exact, and our bounds may provide the

measure of that uncertainty, which should be understood in the sense of (36), asymptotically with relative

accuracy (38). The bounds and the hypotheses are interrelated once the bounds are expected to predict

the observed uncertainty, hence also the accuracy of the hypotheses. The uncertainty puts limits on the

accuracy, with which the macroscopic elastic constants of a random polycrystalline material could be

determined theoretically or experimentally. The boundary-value elastic equilibrium problems for technical

random polycrystalline materials cannot be solved with arbitrary high accuracy even theoretically, but with
that limited by the uncertainty of the coefficients (the effective elastic moduli) of the respective differential

equations. Furthermore an elastic wave transmitting through such a macroscopically slightly inhomo-

geneous medium, even in the long wave limit, may be scattered and attenuated, though such effects appear

to be weak. These qualitative observations are expected to apply to any randomly inhomogeneous con-

tinuum. Roughly speaking, if it is randomly inhomogeneous on microscopic level, it may be slightly

inhomogeneous on the macroscopic scale (but without clearly defined sizes of ‘‘macroscopic inhomo-

geneities’’)––in difference with periodic structures, where macroscopic properties are proved to be unique

and macroscopic homogeneity is guaranteed. Direct and high accuracy experiments are needed to check our
theoretical results for them to be of possible practical significance.
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Appendix A

Some additional formulae for the general bounds:
UK ¼ C�0
ijijDklppDklqq

h2

35
� C�0

iikkDjjppDllqq
2h2

525
� C�0

iiklDkjppDljqq
2h
35

þ C�0
ijikDjlppDklqq

4h2

35

�
� 4h

35
þ 1

10

�

� C�0
ijikDkjppDllqq

2h
35

þ C�0
ijklDijppDklqq

h2

75

�
þ 8h

105
� 1

15

�
þ C�0

ijklDikppDljqq
1

10

�
� 4h

35

�

þ C�0
ijkkDijppDllqq

4h
105

�
� 8h2

525

�
; ðA:1Þ

UM ¼ C�0
ijijDklpqDklpq

h2

35
� C�0

iikkDjjpqDllpq
2h2

525
� C�0

iiklDkjpqDljpq
2h
35

þ C�0
ijikDjlpqDklpq

4h2

35

�
� 4h

35
þ 1

10

�

� C�0
ijikDkjpqDllpq

2h
35

þ C�0
ijklDijpqDklpq

h2

75

�
þ 8h

105
� 1

15

�
þ C�0

ijklDikpqDljpq
1

10

�
� 4h

35

�

þ C�0
ijkkDijpqDllpq

4h
105

�
� 8h2

525

�
; ðA:2Þ

C�0 ¼ C� C0; C0 ¼ Tðk0; l0Þ; h ¼ 3k0 þ l0

3k0 þ 4l0

; ðA:3Þ
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Dijkl ¼ 1
2
ðdikdjl þ dildjkÞ � dklðkþ� � 2

3
lþ�ÞðCþ C�Þ�1

ijnn � 2lþ�ðCþ C�Þ�1

ijkl;

kþ� ¼ ½ðCþ C�Þ�1

iijj�
�1
; lþ� ¼ 2

5
ðC

h
þ C�Þ�1

ijij � 2
15
ðCþ C�Þ�1

iijj

i�1

:
ðA:4Þ
�UUK and �UUM have the same forms as UK and UM with �CC�0, �hh and �DD taking the places of C�0, h and D,

respectively:
�CC�0 ¼ �CC0 : ½C�1 � ð�CC0Þ�1� : �CC0; �CC0 ¼ Tð�kk0; �ll0Þ; �hh ¼ 3�kk0 þ �ll0

3�kk0 þ 4�ll0

; ðA:5Þ

�DDijkl ¼ �kk0

�
� 2

3
�ll0

�
dijdkl þ �ll0ðdikdjl þ dildjkÞ � �kk0

�
� 2

3
�ll0

�
dijdkl

�kkþ�
�

� 2
3
�llþ�
�
½C�1 þ ð�CC�Þ�1��1

ppqq

� 2�ll0dkl
�kkþ�
�

� 2
3
�llþ�
�
½C�1 þ ð�CC�Þ�1��1

ijqq � 2�llþ� �kk0

�
� 2

3
�ll0

�
dij½C�1 þ ð�CC�Þ�1��1

ppkl

� 4�ll0�ll
þ�½C�1 þ ð�CC�Þ�1��1

ijkl; ðA:6Þ

�kkþ� ¼ ð½C�1 þ ð�CC�Þ�1��1

iijjÞ
�1
;

�llþ� ¼ 2
5
½C�1

�
þ ð�CC�Þ�1��1

ijij � 2
15
½C�1 þ ð�CC�Þ�1��1

iijj

��1

:
ðA:7Þ
Appendix B

Additional formulae for the bounds on the aggregate of trigonal crystals (classes 3m; 32; �33m).
For the upper bounds we have:
D1111 ¼ D2222 ¼ D11 ¼ 1 � kþ�

� 2

3
lþ��ðSþ�

11 þ Sþ�
12 þ Sþ�

13 Þ � 2lþ�Sþ�
11 ;

D1122 ¼ D2211 ¼ D12 ¼ � kþ�

� 2

3
lþ��ðSþ�

11 þ Sþ�
12 þ Sþ�

13 Þ � 2lþ�Sþ�
12 ;

D1133 ¼ D2233 ¼ D13 ¼ � kþ�

� 2

3
lþ��ðSþ�

11 þ Sþ�
12 þ Sþ�

13 Þ � 2lþ�Sþ�
13 ;

D3311 ¼ D3322 ¼ D31 ¼ � kþ�

� 2

3
lþ��ð2Sþ�

13 þ Sþ�
33 Þ � 2lþ�Sþ�

13 ;

D3333 ¼ D33 ¼ 1 � kþ�

� 2

3
lþ��ð2Sþ�

13 þ Sþ�
33 Þ � 2lþ�Sþ�

33 ;

D2323 ¼ D1313 ¼ D44 ¼ 1
2
� 2lþ�Sþ�

44 ; D1212 ¼ D66 ¼ 1
2
� lþ�ðSþ�

11 � Sþ�
12 Þ;

D1123 ¼ D2311 ¼ D3112 ¼ D1231 ¼ D14 ¼ �2lþ�Sþ�
14 ;

D2223 ¼ D2322 ¼ D24 ¼ �2lþ�Sþ�
14 ¼ �D14;

ðB:1Þ
where
kþ� ¼ Pkðk�; l�Þ þ k�; lþ� ¼ Plðk�; l�Þ þ l�; ðB:2Þ

Sþ�
11 ¼ 1

2

Cþ�
33

Cþ�
33 ðCþ�

11 þ Cþ�
12 Þ � 2ðCþ�

13 Þ
2

"
þ Cþ�

44

Cþ�
44 ðCþ�

11 � Cþ�
12 Þ � 2C2

14

#
;

Sþ�
12 ¼ 1

2

Cþ�
33

Cþ�
33 ðCþ�

11 þ Cþ�
12 Þ � 2ðCþ�

13 Þ
2

"
� Cþ�

44

Cþ�
44 ðCþ�

11 � Cþ�
12 Þ � 2C2

14

#
;

Sþ�
13 ¼ �Cþ�

13

ðCþ�
11 þ Cþ�

12 ÞCþ�
33 � 2ðCþ�

13 Þ
2
; Sþ�

33 ¼ Cþ�
11 þ Cþ�

12

ðCþ�
11 þ Cþ�

12 ÞCþ�
33 � 2ðCþ�

13 Þ
2
;

Sþ�
44 ¼ ðCþ�

11 � Cþ�
12 Þ=4

ðCþ�
11 � Cþ�

12 ÞCþ�
44 � 2C2

14

; Sþ�
14 ¼ �C14=2

ðCþ�
11 � Cþ�

12 ÞCþ�
44 � 2C2

14

;

ðB:3Þ
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UM ¼ h2

35
ð3C�0

11 �C�0
12 þC�0

33 þ4C�0
44 Þð3D2

11 þD2
33 þ3D2

12 þ2D2
13 þ2D2

31 �2D11D12 þ8D2
44 þ16D2

14Þ

� 2h2

525
ð2C�0

11 þC�0
33 þ2C�0

12 þ4C�0
13 Þ

3

2
ðD33 þ2D13Þ2 �2h

35
½ðC�0

11 þC�0
12 þC�0

13 Þ

	ð3D2
11 þ3D2

12 þ2D2
13 þ4D2

44 �2D11D12 þ10D2
14ÞþðC�0

33 þ2C�0
13 ÞðD2

33 þ2D2
31 þ4D2

44 þ4D2
14Þ�

þ 4h2

35

�
�4h

35
þ 1

10

�
3

2
ðC�0

11

�
�1

2
C�0

12 þC�0
44 Þð3D2

11 þ3D2
12 �2D11D12 þ4D2

44 þ2D2
13 þ10D2

14Þ

þðC�0
33 þ2C�0

44 ÞðD2
33 þ2D2

31 þ4D2
44 þ4D2

14Þ
�
�2h

35

3

2
C�0

11

��
�1

2
C�0

12 þC�0
44

�
ð2D13 �D11 �D12Þ

	ð2D13 þD33ÞþðC�0
33 þ2C�0

44 ÞðD33 �D31ÞðD33 þ2D13Þ
�
þ h2

75

�
þ 8h

105
� 1

15

�
½C�0

11 ð3D2
11 þ3D2

12

þ2D2
13 þ8D2

14 �2D11D12ÞþC�0
33 ðD2

33 þ2D2
31ÞþC�0

12 ð6D11D12 þ2D2
13 �8D2

14 �2D2
11 �2D2

12Þ
þ4C�0

13 ðD11D31 þD12D31 þD13D33Þþ16C�0
44 ðD2

44 þD2
14Þþ16C�0

14 D
2
14ð2D44 þD11 �D12Þ�

þ 1

10

�
�4h

35

�
C�0

11

5

2
D2

11

��
þ5

2
D2

12 þ3D2
13 þ4D2

14 þD11D12

�
þC�0

33 ðD2
33 þ2D2

31Þþ8C�0
13 ðD2

44 þD2
14Þ

þC�0
12 4D2

14

�
þ1

2
D2

11 þ
1

2
D2

12 �D2
13 �3D11D12

�
þ4C�0

44 ð2D2
44 þ2D2

14 þD11D31 þD12D31 þD13D33Þ

þ8C�0
14 D14ðD11 �D12 þ4D44Þ

�
þ 4h

105

�
� 8h2

525

�
½ðC�0

11 þC�0
12 þC�0

13 Þð2D13 �D11 �D12ÞðD33 þ2D13Þ

þðC�0
33 þ2C�0

31 ÞðD33 �D31ÞðD33 þ2D13Þ�:
ðB:4Þ
For the lower bounds we have:
�DD11 ¼ �2 �ll0
�kkþ�
�h

� 2
3
�llþ�
�
þ �llþ� �kk0

�
� 2

3
�ll0

�i
ð�CCþ�

11 þ �CCþ�
12 þ �CCþ�

13 Þ þ 2�ll0 þ �kk0

�
� 2

3
�ll0

�
2
3
�llþ�

�kkþ�
.

� 4�ll0�ll
þ� �CCþ�

11 ;

�DD12 ¼ �2 �ll0
�kkþ�
�h

� 2
3
�llþ�
�
þ �llþ� �kk0

�
� 2

3
�ll0

�i
ð�CCþ�

11 þ �CCþ�
12 þ �CCþ�

13 Þ þ �kk0

�
� 2

3
�ll0

�
2
3
�llþ�

�kkþ�
.

� 4�ll0�ll
þ� �CCþ�

12 ;

�DD33 ¼ �2 �ll0
�kkþ�
�h

� 2
3
�llþ�
�
þ �llþ� �kk0

�
� 2

3
�ll0

�i
ð�CCþ�

33 þ 2�CCþ�
13 Þ þ 2�ll0 þ �kk0

�
� 2

3
�ll0

�
2
3
�llþ�

�kkþ�
.

� 4�ll0�ll
þ� �CCþ�

33 ;

�DD13 ¼ �2�ll0
�kkþ�

 
� 2

3
�llþ�

!
ð�CCþ�

11 þ �CCþ�
12 þ �CCþ�

13 Þ � 4�ll0�ll
þ� �CCþ�

13 � 2 �kk0

 
� 2

3
�ll0

!
�llþ�ð�CCþ�

33 þ 2�CCþ�
13 Þ

þ �kk0

�
� 2

3
�ll0

�
2
3
�llþ�
�

�kkþ�;

�DD31 ¼ �2�ll0
�kkþ�
�

� 2
3
�llþ�
�
ð�CCþ�

33 þ 2�CCþ�
13 Þ � 4�ll0�ll

þ� �CCþ�
13 � 2 �kk0

�
� 2

3
�ll0

�
�llþ�ð�CCþ�

11 þ �CCþ�
12 þ �CCþ�

13 Þ

þ �kk0

�
� 2

3
�ll0

�
2
3
�llþ�
�

�kkþ�;

�DD44 ¼ �ll0 � 4�ll0�ll
þ� �CCþ�

44 ;
�DD14 ¼ �4�ll0�ll

þ� �CCþ�
14 ;

ðB:5Þ
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where
�kkþ� ¼ ð2�CCþ�
11 þ 2�CCþ�

12 þ 4�CCþ�
13 þ �CCþ�

33 Þ
�1
;

�llþ� ¼ 15

2
ð7�CCþ�

11 � 5�CCþ�
12 � 4�CCþ�

13 þ 2�CCþ�
33 þ 12�CCþ�

44 Þ
�1
;

ðB:6Þ

�CCþ�
11 ¼ 1

2

�SSþ�
33

�SSþ�
33 ð�SSþ�

11 þ �SSþ�
12 Þ � 2ð�SSþ�

13 Þ
2

"
þ

�SSþ�
44

�SSþ�
44 ð�SSþ�

11 � �SSþ�
12 Þ � 2�SS2

14

#
;

�CCþ�
12 ¼ 1

2

�SSþ�
33

�SSþ�
33 ð�SSþ�

11 þ �SSþ�
12 Þ � 2ð�SSþ�

13 Þ
2

"
�

�SSþ�
44

�SSþ�
44 ð�SSþ�

11 � �SSþ�
12 Þ � 2�SS2

14

#
;

�CCþ�
13 ¼ ��SSþ�

13

ð�SSþ�
11 þ �SSþ�

12 Þ�SSþ�
33 � 2ð�SSþ�

13 Þ
2
; �CCþ�

33 ¼
�SSþ�

11 þ �SSþ�
12

ð�SSþ�
11 þ �SSþ�

12 Þ�SSþ�
33 � 2ð�SSþ�

13 Þ
2
;

�CCþ�
44 ¼ ð�SSþ�

11 � �SSþ�
12 Þ=4

ð�SSþ�
11 � �SSþ�

12 Þ�SSþ�
44 � 2�SS2

14

; �CCþ�
14 ¼ ��SS14=2

ð�SSþ�
11 � �SSþ�

12 Þ�SSþ�
44 � 2�SS2

14

;

ðB:7Þ

�SSþ�
11 ¼ S11 þ

1

9�kk�
þ 1

3�ll�
; �SSþ�

33 ¼ S33 þ
1

9�kk�
þ 1

3�ll�
; �SSþ�

44 ¼ S44 þ
1

4�ll�
;

�SSþ�
12 ¼ S12 þ

1

9�kk�
� 1

6�ll�
; �SSþ�

13 ¼ S13 þ
1

9�kk�
� 1

6�ll�
;

ðB:8Þ
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1

2

C33

C33ðC11 þ C12Þ � 2C2
13

�
þ C44

C44ðC11 � C12Þ � 2C2
14

�
;

S12 ¼
1

2

C33

C33ðC11 þ C12Þ � 2C2
13

�
� C44

C44ðC11 � C12Þ � 2C2
14

�
;

S13 ¼
�C13

ðC11 þ C12ÞC33 � 2C2
13

; S33 ¼
C11 þ C12

ðC11 þ C12ÞC33 � 2C2
13

;

S44 ¼
ðC11 � C12Þ=4

ðC11 � C12ÞC44 � 2C2
14

; S14 ¼
�C14=2

ðC11 � C12ÞC44 � 2C2
14

;

ðB:9Þ

�CC�0
11 ¼ �kk0
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�ll0
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�kk0

�
� 2

3
�ll0
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�
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�ll0
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�
� 2

3
�ll0
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�ll0;
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�ll0

�2
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�
� 2

3
�ll0

�
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�
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3
�ll0
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�
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3
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�
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3
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ðB:10Þ

�hh ¼ 3�kk0 þ �ll0

3�kk0 þ 4�ll0

: ðB:11Þ
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