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Abstract

Because of the uncertain irregular microgeometry, a random polycrystalline aggregate (the shape and crystalline
orientations of the constituent anisotropic grains of which are uncorrelated) may have elastic moduli scattered over
some, though small, intervals, while the conventional macroscopic homogeneity and isotropy hypotheses for it may
be considered only as approximate with corresponding uncertainty. Our formal bounds are proposed to provide the
estimates on those uncertainties in asymptotic sense. Explicit expressions for the aggregates of trigonal crystals (classes
3m, 32, 3m) are derived.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many technical homogeneous and isotropic materials with tabulated macroscopic elastic moduli
(measured directly from experiments) on microscopic scale are random polycrystalline aggregates. Macro-
scopic (effective) properties of those aggregates depend upon the properties of the base crystal as well as the
polycrystalline microgeometry. In polycrystal forming processes, the constituent crystals are often formed
independently at random places and grow till they meet each other. The kinematic constraints, boundary
traction, friction, and inertia would not allow the crystals to turn over and fit together to make a con-
figuration with minimal surface energy (as to form a single big crystal), but leave the primary crystalline
orientations of the grains intact and accommodate them with the help of various defects on their common
boundary (such as dislocation walls...). Hence it appears that the shape and crystalline orientations of the
constituent grains in a random aggregate are uncorrelated. There may be competing tendency to some local
correlation due to surface energy and anisotropic structure of the crystals; however, overall disorder and
randomness seems to prevail and the randomness hypotheses can be considered as good approximation in
many cases. This randomness makes the aggregate’s effective moduli isotropic and so definite that they can
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be tabulated for applications, while all possible artificial well-ordered combinations of crystals may have a
wide range of macroscopic properties including the same anisotropic ones as those of the base crystal
(Avellaneda et al., 1988; Milton and Kohn, 1988; Avellaneda and Milton, 1989). Simple arithmetic (Voigt,
1928) and harmonic (Reuss, 1929) averages, or more sophisticated self-consistent approximations
(Bruggeman, 1935; Landauer, 1952; Sermergor, 1977; Kroner, 1980; Norris, 1985; Pham, 1998; Pham and
Phan-Thien, 1998) are often used to relate the grains’ and aggregate’s properties. However no available
formula can give the precise value of a macroscopic property of a random polycrystal, except for very few
cases where a property is independent of aggregate’s geometry. The irregular and random nature of
polycrystalline microgeometry makes the mathematical problem of finding the exact values of the effective
moduli intractable. In addition, contrary to the conventional viewpoint, the effective properties of a random
polycrystal may be not unique to be determined even in principle. There is no mathematical proof of
uniqueness of elastic moduli of a random polycrystal, though one often takes it as a hypothesis. Available
experimental data seem only to suggest that the polycrystalline material moduli are close to be unique such
that they can be tabulated for technical uses (as certain numbers with just a few significant digits). Hence, in
addition to the approximation schemes, the more refined approach to the problem is to construct upper and
lower bounds on the possible values of the effective properties (Hill, 1952; Hashin and Shtrikman, 1962;
Beran, 1968; Miller, 1969; Silnutzer, 1972; Zeller and Dederichs, 1973; Elsayed, 1974; Sermergor, 1977,
Williemse and Caspers, 1979; McCoy, 1981; Phan-Thien and Milton, 1983; Pham, 1993, 1994, 1996, 1997,
2000a,b, 2001; Pham and Phan-Thien, 1998). A strategy to derive the bounds is to substitute appropriately
constructed trial strain and stress fields into the minimum energy and complementary energy principles,
exploring statistical hypotheses for a random aggregate. Our formal bounds (Pham, 2000b) appear the
tightest available ones for the elastic moduli of a completely random polycrystal. They will be presented in
the condensed form in the next section. In Section 3 we derive particular expressions of the bounds for the
aggregates of trigonal crystals (classes 3m, 32, 3m). A compromise in interpreting the bounds as the measure
of uncertainty in observed elastic moduli of a random polycrystal will be presented in the last section.

2. Upper and lower bounds

In Pham (1993, 1997, 2000b) we consider a random polycrystal as a multicomponent material, each
component of which is composed of the crystals of the same crystalline orientation (the number of the
equal-volume components increase afterward to infinity to cover all possible orientations). The bounds are
deduced from the minimum energy and complementary energy principles by substituting in them polari-
zation trial fields (9)—(11) and (20)—(21) of Pham (2000b)—similar to those fields of Hashin and Shtrikman
(1962); however, we do not use Hashin—Shtrikman specific variational principles. To evaluate the bounds,
we presume the statistical isotropy and symmetry hypotheses (5) and (19) of Pham (1997): Statistical
isotropy hypothesis (needed also for derivation of Hashin—Shtrikman bounds) requires that certain tensor
integrals formed from spacial differentiation of harmonic potentials of unit density taken upon components’
geometry of the aggregate be isotropic. Statistical symmetry hypothesis requires that an interchange of the
spaces between any two components of different crystalline orientations should not alter overall charac-
teristics of the random polycrystal. Alternative hypotheses on symmetric cell polycrystals having a similar
sense have been taken in Williemse and Caspers (1979), Pham (2000a).

Let C denote the fourth-rank elasticity tensor of the base crystal of a polycrystal with components C;j;;
C°—the effective elasticity tensor defined on an aggregate representative element (in large limit compared to
the sizes of the constituent grains such that no size effect could be presented). The formal bounds on C° can
be given in the form (Pham, 2000b)

e:P(C,C"):e>8:C:e>¢:P(C,C"):¢ (1)
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for all symmetric second-rank strain tensor g where
P(C7C*)_ (PIHP)a

P(C.C) = [(C+C)y] ' k., 2)
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6ko + 1241
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C' =T(.,n), k ==n, = Hy—=—"7—,
(k. 1) e B =g

. 4
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T(k, 1) is the isotropic fourth-rank tensor function with the components
T (k, 1) = (k —310) 000 + 1(dudj + dudj), (4)

d;; 1s usual Kronecker symbol, conventional summatlon on repeating indices is assumed, and (C + C* )ukl
denote the components of the tensor (C + C” ) . If the effective elasticity tensor C° is taken definitely as
isotropic, then it can be represented through the bulk (k) and shear (u,) moduli:

C° = T(ke, 1,). (5)

Besides the base crystal elasticity tensor C, the above bounds contain the free parameters ko, i, for the
upper bounds and k, fi, for the lower bounds. The parameters ko, 1, for the upper bounds are restricted by

ko = kv, po = py (6)
and

UK(CkaHMO) <O, (7)

U (C, ko, tty) — 3Ux (C, ko, 1) <0, (8)

where ky and uy are Voigt’s arithmetic average values
_1 _1 1
kv = 5Cujjs v = 16Ci7 — 35Cuj- )

The expressions of Uy and U, are given in Appendix A ((A.1)-(A.4)). The best upper bounds are obtained
when the free parameters ky and g, restricted by (6)—(8) are chosen such as to make the upper bounds in (1)
as small as possible.

The parameters k, ji, for the lower bounds are restricted by

k'=ky's my' =g (10)
and

UK(Cvl_C()?ﬁO) <0, (11)

UM(CvicOa :aO) - %U[((C,i((), :aO) < 07 (12)

where kg and py are Reuss’ harmonic average values

ke =[O = [H0, - 3O] (13)

Uy and U, have the same forms as Uy and Uy, in (A.1) and (A.2) with C™°, 6 and D taking the places of
C°, 0 and D, respectively (see also (A.5)—(A.7) of Appendix A).
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The best lower bounds are obtained when the free parameters ko, fi, restricted by (10)—(12) are chosen
such as to make the lower bounds in (1) as large as possible.

One defines an interesting subclass of idealized spherical cell polycrystals, which are supposed to be
composed exclusively from crystals of spherical forms and different sizes distributed randomly (Miller,
1969; Silnutzer, 1972; Zeller and Dederichs, 1973; Williemse and Caspers, 1979; Pham, 1996, 1997; Pham
and Phan-Thien, 1998). The subclass is supposed to approximate practical equiaxed particulate aggregates.
The bounds for them are especially simple, which have the structure (1)—(3) with the parameters ky, y, (for
the upper bounds) and ky, ji, (for the lower bounds) coinciding with Voigt and Reuss averages, respectively

ko=kv, po=ty, ko=kr, o= fix- (14)
Hashin and Shtrikman (1962) bounds may also be expressed as (1)—(3) with ko, 1,, and ko, fi, being re-
stricted by

£:(C—C":e<0, o:[C"'=(C)":6<0 (15)

for all possible second rank symmetric tensors ¢ and o.
The self-consistent approximation k;, u, for the aggregate moduli is the solution of the self-consistent
equations
ks = P.(C,C"), u,=P,(C,C"),
4 Ok, + 8u (16)
C” = T(kig, Uyy);, ks =Sl Moy = Py
( S IuA) 3 31”5 :us ‘us6k5+12,u9

3. The aggregate of trigonal crystals

The elastic tensor of trigonal crystals of classes 3m, 32, 3m in its base crystal reference is expressed
through six elastic constants, which in the two-index notation are given as Cy;, Cjp, Ci3, Ci4, C33, Ca4. The
correspondence between the usual fourth-rank elasticity tensor components C;;,; and those in the two-index
notation is

Ci=Cun = Can, Gy =~Cayn, Cu=Cuin = G,
Cis=Cias = Gz, Cia=Cpzm, Cpp =3(Ch — Ci), (17)
Cis = Ciins = —Coz = Ciapa.

Voigt and Reuss averages from (8) and (13) have particular forms

ky = §(2C11 + 2C1y 4+ 4C13 + Cxs),
py = %(7C1y = 5C15 — 4C13 + 2C53 + 12Cu),
g — (Ci1 + C12)Cs3 — 2C, 7
Cii+Cip —4C3 +2Cx
g = 15[2C1 +2Cio +4Cis + Gy 3C1 = 3Cio +6Cu
2 Cy(Chy + C) — 2C% Cu(Cy — Cp) — 2C3,

—1

The property functions P, and P, from (2) become

(Cf + €0 —2(Cl)’
Po(k., 1) = 2 )% k., 19
(e 1) Cii + Cly —4CT +2C5 (19)
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15[ 20 + 20 +4CH +C7 3¢ —3CH +6C |
Py(kiypt,) = — Cir +2C; +4G;, +C332 + 5“ - Cli:r C442 -, (20)
21 C(Cly+ ) —2(Cy) GGy —Cy) —2C,

where
Clr=Cnu+k +in, Ci=Cu+k+in, C; =Cu+upu, (21)
Ch =Cn+k —3u, CL=Csi+k —3u,.
The bounds for the specific spherical cell polycrystals are simple
kzke =k, = pe = (22)
where
ki = Pe(ke, ), u = Pk, ), 23)

k;:Pk(l}*,ﬁ*), HIS:P#(];*,,E*),

with k,, u,, k., ji, being determined by (3) and (14).
To derive the general shape-independent bounds for the elastic moduli, we must calculate the compo-
nents D;j, from (A.4). These results are given in (B.1)—~(B.3) of Appendix B. From (B.1) one can verify that

Dy + Dy; + D3 = —3(D33 4+ 2Ds1),  Dyy + Dyp + D3y = —3(Ds3 + 2Dy3). (24)
Substituting (B.1) into (A.1) and taking into account (24), after some algebra we obtain
Uk = 5(Ds3 + 2D31)2Q(C,;°, ko o) (25)
where
-0 307 -0 -0 -0 oy 20, -0 -0 -0
Q(Cl.j ko, 1) = §(3C]1 —C, +C37 +4C,) — S(C” +C, +5CF +2C3)
2
+ (% —%Jr%) (%CHO - %c;;) +2C3) + 5c44°) + (% - g)
X (;CH‘) - %C;ZO +2C5) — 4C44°) + (%+% - %) (C) + C) —4C +2C3),
(26)
Cil =Cu—ko =31y, Cif =Cn—hko =31y, Cii = Cus— piy, 27)
Ciy =Ci—ko+3uy, Cp3 =Cis—ko+ 2.
The best shape-independent upper bound on the aggregate bulk modulus is
ke <K, (28)
where
k' = Inf {Pu(k., 1) ko > kv, g > a, 0(C;;°, ko, 1) <0} (29)

For numerical implementation of (29), we just increase &, and ,, respectively, from ky and p, until we get

0<0.
The best shape-independent upper bound on the shear modulus is

He < (30)
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where

pt = inf {P,(k., ) |ko = kv, g = py, Uy — 3Ux <0},

ko.ko

Uy, is given by Eq. (B.4) of Appendix B.
Similarly, the best shape-independent lower bound on the bulk modulus is

ke =k,
where
K= sup{Pi(k., )|k " = k' By = g, O(C;; ko, g) < 0}
koo

and the lower bound on the shear modulus is

=,
where
W= sup{P(k., i)k = kg it = ' Oy — 30k <03,
ko, o

(31)

(35)

O and Uy, have the same forms as Q from (26) and Uy, from (B.4) with 6, C;;° and D;; (see (B.5)~(B.11) of

Appendix B) taking the places of 6, Cl.;o and D;;, respectively.

Numerical results for the elastic moduli of the random aggregates of the trigonal crystals, the elastic
constants of which are taken from Landolt-Bornstein (1979) (Table 1), are presented in Tables 2 and 3. The
tabulated general shape-independent bounds (28)—(31) and (32)—(35), the bounds for specific spherical cell
polycrystals (22) and (23), and the self-consistent values (16) are rounded to four significant digits. Hashin—
Shtrikman bounds calculated in Watt and Peselnick (1980) are also included for a comparison. The rela-
tively complicated general shape-independent bounds do not differ very much from the much simpler
bounds for the specific spherical cell polycrystals (22), (23) and (14), which approximate practical equi-axed

Table 1
The elastic constants (in GPa) of trigonal crystals (classes 3m, 32, 3m)

Cn Cs3 [om Cpp Ci3 Cuy
MgCO;, 259 156 54.8 75.6 58.8 -19.0
CaCO;, 144.5 83.1 32.65 57.1 53.4 -20.5
Bi 63.7 38.2 11.23 24.9 24.7 7.17
AL O3 496.8 498.1 147.4 163.6 110.9 -23.5
SiO, 86.87 105.74 58.18 7.09 11.92 —-18.04
AIPO, 105 134 23.1 29.3 69.3 -12.7
Sb 101 44.8 39.6 314 27.0 22.1
Bi, Te; 68.5 47.7 27.4 21.8 27.0 13.2
CdI, 43.1 22.5 5.5 20.4 8.9 0
CrO; 374 362 159 148 175 -19
Fe,0; 242 228 85.3 54.9 15.7 -12.7
FeBO; 445 305 95 145 140 20
Pbl, 27.7 20.2 6.2 9.6 11.3 3.0
LiTaO; 230 276 95.9 42 79 -11
KBrO; 43.1 23.6 16.6 14.4 15.5 -0.34
Se 18.6 76.1 14.8 7.3 25.2 5.6
Te 344 70.8 32.7 9.0 24.9 13.1
As 130 58.7 22.5 30.3 64.3 -3.7




Table 2

The upper and lower bounds on the polycrystalline elastic bulk modulus: ks, ki;s—Hashin-Shtrikman bounds; k", kK'—the shape-
U kl—the bounds for spherical cell polycrystals; k,—self-consistent value (in GPa); Sy = (k* — k') /(k" + k')—the

> s s

independent bounds; £,
scatter measure
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ks K K ks k? k" ks Sk
MgCO; 113.2 113.8 113.9 114.0 114.1 114.1 114.5 0.0014
CaCoO; 74.4 74.85 74.93 75.14 75.35 75.35 75.9 0.0033
Bi 33.7 33.84 33.87 3395 34.01 34.01 34.2 0.0025
Al O3 251.1 251.1 251.1 251.1 251.1 251.1 251.1 0.00001
Si0, 37.6 37.67 37.67 37.68 37.68 37.69 37.7 0.00021
AIPO, 71.75 71.77 72.00 72.23 72.23 0.0033
Sb 43.03 43.17 43.49 43.82 43.82 0.0092
Bi,Te; 37.07 37.08 37.10 37.12 37.12 0.00064
Cdl, 18.70 18.73 18.79 18.86 18.86 0.0042
CrO; 234.0 234.0 234.0 234.0 234.0 0
Fe, 03 97.71 971.71 97.78 97.78 97.78 0.00003
FeBO; 223.7 223.8 223.8 223.9 223.9 0.00045
Pbl, 15.45 15.45 15.46 15.46 15.46 0.00035
LiTaO; 124.8 124.8 124.8 124.8 124.8 0.00010
KBrO; 21.61 21.66 21.69 21.70 21.70 0.0022
Se 13.84 13.84 15.30 16.96 17.58 0.12
Te 24.66 24.66 25.18 25.71 25.80 0.023
As 66.76 67.53 69.01 69.31 69.31 0.019
Table 3

The upper and lower bounds on the polycrystalline elastic shear modulus: s, this—Hashin-Shtrikman bounds; u", i'—the shape-
independent bounds; p¢, yl—the bounds for spherical cell polycrystals; yu—self-consistent value (in GPa); S, = (u — ) /(p* + p)—

the scatter measure

1

Hhs It 1 1y w e Hiss Su
MgCO; 67.1 67.78 67.78 67.91 68.03 68.04 68.5 0.0019
CaCO; 29.1 29.93 29.93 30.28 30.62 30.64 317 0.012
Bi 12.0 12.37 12.37 12.49 12.60 12.61 13.0 0.0096
AlLO; 163.2 163.4 163.4 163.4 163.5 163.5 163.7 0.00013
Si0, 435 44.01 44.01 44.11 44.22 44.26 44.9 0.0028
AIPO, 24.96 24.96 25.14 25.32 25.32 0.0072
Sb 26.11 26.12 26.63 27.21 27.25 0.021
Bi,Te; 19.26 19.26 19.43 19.63 19.65 0.010
cdL, 8.448 8.448 8.472 8.498 8.498 0.0029
CrO; 123.1 123.1 123.1 1232 1232 0.00045
Fe,0; 93.08 93.09 93.10 93.11 93.11 0.00012
FeBO; 115.0 115.0 115.1 115.1 115.1 0.00069
PbL, 6.532 6.532 6.554 6.577 6.578 0.0035
LiTaO; 92.06 92.06 92.07 92.07 92.07 0.00006
KBrO; 13.07 13.14 13.17 13.18 13.18 0.0042
Se 6.722 6.748 7.250 7.817 7.817 0.075
Te 14.12 14.15 14.84 15.61 15.66 0.052
As 18.69 19.81 22.91 23.73 23.73 0.12

particulate aggregates. Hence, the latter may give good estimation of the scatter ranges for many practical
polycrystalline aggregates and can be recommended for practical use. Note that they are even simpler than
the less tight Hashin-Shtrikman bounds.
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4. The uncertainty and asymptotic estimates

As stated in Section 1, there are no mathematical or experimental proofs of the conventional assumption
that the effective moduli of a particular random polycrystalline material should be unique. On the contrary,
because of the irregular microgeometry, the effective properties of a random polycrystalline material may be
not unique, and two different representative elements (in large limit compared to the sizes of constituent
grains) of the same polycrystalline material may have slightly different effective properties (because they do
not have identical microgeometry). We presume our bounds provide these possible scatter ranges of the
effective moduli. Once the effective moduli of a random polycrystal are not unique, the macroscopic homo-
geneity and isotropy hypotheses for it are not exact anymore and can be considered only as approximate.
So in this sense, at least as a conservative measure, we should abandon the precise isotropy statement (5)
and come to the general inequalities (1) where C° can be slightly anisotropic (of all possible kinds) as
allowed by the bounds. Hence, the shape-independent bounds (28), (30), (32) and (34) should be under-
stood as

e Tk, 1) :e=>e:C:e=e: Tk, i) : & (V symmetric g). (36)
However the particular expressions of the upper and lower bounds k°, p", k!, u! themselves have been
derived using mathematical expressions of statistical isotropy and symmetry hypotheses, which are sup-
posed to be not exact but approximate. This means the bounds are not rigorous and could be violated by

the effective moduli. Still, they can be interpreted in “extended asymptotical sense’” as follows.
As the size of the scatter range of the bounds (36) we take

S = max{S, S,},

= (K = K) /(K" + k), Se= (" — 1)/ (1" + ).

The respective size of the scatter range of the respective bounds for specific spherical cell polycrystals is
designated as S.

It appears that the scatter measures of our bounds are small for considered polycrystalline materials, in
particular S, S; < 1. We have known that, in asymptotic sense, the bounds for spherical cell polycrystals
are third order in the base crystal elasticity anisotropy contrast for an expansion around a homogeneity
(with the respective range size S,), while the Voigt—Reuss—Hill bounds are first order (hence, with the range
size equivalent to S!/3), and Hashin-Shtrikman bounds are second order (with the measure equivalent to
§%/3). The shape-independent bounds (36) are partly third order (with the measure S > S)—but close to S,
as we have seen in the previous section.

Because the statistical isotropy and other hypotheses used for derivation of the bounds (36) may be not
exact, the bounds may be considered only as approximate in asymptotic sense as follows. Presume the
accuracy of the hypotheses is about the amount S, as suggested by the bounds. The lowest order terms in
the expressions of the upper and lower bounds, where the isotropy hypothesis has been applied to evaluate,
are the second order ones (equivalent to S*/?), in particular the terms involving the approximations (3) of
Pham (1997). This leads subsequently to the possible errors of about S -S5%3 for the expressions of the
shape-independent bounds (or about fifth order S; - $?/3 = §°/3 in the spherlcal cell polycrystal case). Say,
the effective moduli may be even larger (smaller) than the derlved upper (lower) bounds by these small
amounts. Then we have the relative possible error r = § - S¥3 /S = S/ for the derived scatter range S (the
same error expression for S;). Thus the bounds may give reliable prediction of the uncertainty interval S
(and S;) only under the condition that this relative error » is small:

r=8"<1. (38)
Roughly speaking the effective properties may have values higher than the upper bounds, or lower than

the lower bounds by amounts small compared to the distances between the bounds if » is small. The bounds
become not rigorous mathematically and should be understood in this extended asymptotic sense.

(37)
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As S, S; increase, r increases correspondingly toward 1, so the magnitudes of the errors may become
comparable to the intervals between the bounds, invalidating the practical significance of the bounds. In
other words, the bounds would be useful only when they are sufficiently narrow, while when they are wide,
the effective moduli may correspondingly fall far outside if one does not presume, in addition, that the real
scatter range should be much smaller than the interval between the obtained bounds. In that case the
bounds become poor predictor and may have only some mathematical, not practical, value! The scatter
measures S, S, calculated for the particular crystals in Tables 2 and 3 are rounded to five decimal places, or
two significant figures. They appear to be rather small. For most of them »<S%*? is only about a few
thousandths, so the obtained numerical results can be considered as reliable in predicting scatter ranges.

One may suggest that narrower bounds could be derived if higher-order correlation information about
the aggregate geometry is incorporated. However, like the effective moduli of a random polycrystal are not
unique, the high order correlation functions may also be not unique and can only be determined with some
uncertainty, while the amounts of these uncertainties may increase for higher order correlation information.
If the uncertainties of the lower order statistical information, as the isotropy and homogeneity hypotheses,
should be indeed as large as comparable to the scatter intervals predicted by our bounds, then the higher
order correlation functions with corresponding (increasing) uncertainties may add little or nothing to
improve the bounds. Alternatively, if the uncertainties of observed macroscopic moduli of a random
polycrystal should indeed be much smaller than the intervals predicted by our bounds, then the accuracy of
the isotropy and homogeneity hypotheses should be higher than that given by our bounds (36), while the
accuracy of our bounds (in mathematical sense) should be better in the sense that the derived bounds may
be violated by amounts much smaller than those indicated above. However the bounds then become of less
use because they predict some too wide intervals, not the good estimation of real uncertainties. In that case,
we need to incorporate new realistic hypotheses to improve the bounds accordingly and drastically. At
present we do not see any such mathematical possibility. The derived bounds are about third order, and our
and other authors’ works show that one cannot go further than third order bounds without specifying
shape and packing information about the microgeometry of a random aggregate (beside the random
hypotheses), but such information is unlikely to be definite, even in principle, for a real-world random
polycrystal with irregular microgeometry, not saying about our ability to find such information. Precise
experiments should provide an answer to this question. In this respect we may cite the experimental data
collected in Warra et al. (1977), Kroner (1980) to check if the measured macroscopic elastic moduli of
random polycrystalline materials should be concentrated toward the self-consistent values. Instead, the
authors observe that the macroscopic moduli scatter almost uniformly over an interval comparable to that
of the third order bounds—the fact agrees qualitatively with the prediction of our shape-independent nearly
third order bounds, though it does not provide direct verification of our bounds, which require experi-
mental data of many samples for every particular polycrystalline material, not the average value. Our
calculated bounds for a number of polycrystals, including those collected in Tables 2 and 3 of this paper,
indicate that one may determine the macroscopic elastic moduli of most materials with the accuracy only
up to from 2 to 4 significant digits (measured values with higher number of digits might be subjected to
fluctuations from sample to sample as allowed by the bounds). Note that tabulated elastic moduli of
technical polycrystalline materials are often given only with very few significant digits. Apart from possible
impurities, technological and measurement factors, the fluctuations caused by the “uncertainty of the
random nature” described in this paper might play a major role.

One can also think of some numerical experiments: e.c. Voronoi tessellation of space with respect to a set
of points thrown randomly and then assigning each cell a random orientation of the base crystal. This
model may be used to test the uniqueness of the elastic moduli and the possible scatter ranges for a random
polycrystal. We expect the calculated effective moduli would scatter (fluctuate from one realization to
another) as predicted by the bounds. However the solution of the elastic equilibrium equations on huge
representative elements with irregular microgeometry, together with high accuracy requirements, makes the
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problem a formidable task. At present we think direct experimental verifications are more feasible. It
should be noted in addition that some idealistic random cell models have been constructed, which have the
effective properties covering large proportions of the intervals within our bounds (Pham, 1998; Pham and
Phan-Thien, 1998).

In conclusion, our view is that the effective elastic moduli of a random polycrystalline material are not
unique, the homogeneity and isotropy hypotheses for it are not exact, and our bounds may provide the
measure of that uncertainty, which should be understood in the sense of (36), asymptotically with relative
accuracy (38). The bounds and the hypotheses are interrelated once the bounds are expected to predict
the observed uncertainty, hence also the accuracy of the hypotheses. The uncertainty puts limits on the
accuracy, with which the macroscopic elastic constants of a random polycrystalline material could be
determined theoretically or experimentally. The boundary-value elastic equilibrium problems for technical
random polycrystalline materials cannot be solved with arbitrary high accuracy even theoretically, but with
that limited by the uncertainty of the coefficients (the effective elastic moduli) of the respective differential
equations. Furthermore an elastic wave transmitting through such a macroscopically slightly inhomo-
geneous medium, even in the long wave limit, may be scattered and attenuated, though such effects appear
to be weak. These qualitative observations are expected to apply to any randomly inhomogeneous con-
tinuum. Roughly speaking, if it is randomly inhomogeneous on microscopic level, it may be slightly
inhomogeneous on the macroscopic scale (but without clearly defined sizes of “macroscopic inhomo-
geneities”’)—in difference with periodic structures, where macroscopic properties are proved to be unique
and macroscopic homogeneity is guaranteed. Direct and high accuracy experiments are needed to check our
theoretical results for them to be of possible practical significance.
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Appendix A

Some additional formulae for the general bounds:
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respectively:
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Appendix B

Additional formulae for the bounds on the aggregate of trigonal crystals (classes 3m, 32, 3m).

For the upper bounds we have:
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For the lower bounds we have:
Dy = =2 (k" =3 ) + i (ko — 30 ) | (Gl + €5 + € + 20 + (Ko — 30 )3
/ k™ — 4yt Cyy,
Dip = =2 (kK = 3" ) + 1 (ko = 30 ) | (€l + €5 + €0 + (Ko — 30 ) 3"
/ k' —dpptCyy,
Dy = -2[g, (7«** - gﬁ**) + i (ko = 30 | (€5 + 2610 + 21, + (Ko — 3o )30

Dis = ~2h (F* —%u**) (Cl + Ci + C) — 4™ Cy —2<7co —%m)u**(%* +2C5)

+ (ko3 e i

Dy = —2u0(k+* 2 +*)(c¢;+2c o 4ﬁ0ﬁ+*61+;—2(1€0—§ﬁ) G (CH o+ + C)

(- i

Dyy = fig — 4ot Cyf',  Diy = =4 Cly,



D.C. Pham | International Journal of Solids and Structures 40 (2003) 4911-4924 4923

where

= (2C/ +2C5 +4C + C;;) ,

—tx 15 - Ak % e Aty —1 (B6)
no= 7<7C11 = 5C)y —4CK +2C5 +12Cy)
i =1 S5 + Sig
U2SE S S —2SE)T S (S - 8h) — 285, |
ok 71 S';S* _ S;t*
PSS 8 - 2SE)T S S -8~ 255 | (B.7)
O — —ST; CHF — Svrl* Sr;
13 * * o+x\2 3 * * o+\2
(S SH)SE - 28h) (St + 8585 — 2(85)°
CL* - (Sﬁi—slrz*)/“ __ Clt;* - 7_S147/2 __
()7 — 81584 —28% (Sf" = 8§5)8 — 251,
. S S T 1
S = Sutgr Ty ST Setgrtyn SW=Sergn B3)
. IR T '
Sl+2 :S12+9_]}*_6_ﬂ*7 SB:S13+9_]}*_6_/_1*’
Sh :l { Ca + Cu ]
2| Ci(Chy + Cra) —2C% - Cu(Cry — Ca) —2C4 |7
S — 1 { Css _ Cus ]
] 2| Cs(Cy +Cra) — 2C123 Cu(Cyy — Cr2) — 2Cf4 ’ (B.9)
Sps = —Ci3 Sy — Ciu+Ch .
(Cyy + Cp)Cyy —2C37 (Cyy + C1p)Cy3 — 2C3
S — (Cii — Cip)/4 S, — —C4/2
44 — 2 14 — 2
(Ci1 — C12)Cyy — 2C5, (Ci1 — C12)Cyy — 2C5,
_ _ 2 _ _
Cy = (ko - %ﬁo) (2811 + 281, + 4813 + S33) +4p, (ko - %ﬂo) (Si1 + S12 4 S13) + 41gSu — ko — 3k,
6;20: (l}o*%ﬁo) (251] + 281, + 4813 +S33 +4u0< 3110) S11 + S +S13)+4,UOS12 1}0 Jr%ﬁo,
_1; = (ko ) (2811 + 2812 + 4813+ S33) + ( 0—% ) (S11 4+ S12+ 3813 +S33)+4,u0513—k0+3ﬂm
Gy = (l_ﬂ) —%ﬁo) (2811 + 281, + 4813 + S33) + ( 0 —3H ) (2813 4 S33) + 4itgS3s — ko — 3,
Cyl = 4158 — Iy, C,7 = 4[5S,
(B.10)
~ 3k + @
0= Ko+ Ho. (B.11)

3ko + 45, .



4924 D.C. Pham [ International Journal of Solids and Structures 40 (2003) 4911-4924

References

Avellaneda, M., Cherkaev, A.V., Lurie, K.A., Milton, G.W., 1988. On the effective conductivity of polycrystals and a three-
dimensional phase-interchange inequality. Journal of Applied Physics 63, 4989-5003.

Avellaneda, M., Milton, G.W., 1989. Optimal bounds on the effective bulk modulus of polycrystals. SIAM Journal of Applied
Mathematics 4, 824-837.

Beran, M.J., 1968. Statistical continuum theories. Wiley, New York.

Bruggeman, D.A.G., 1935. Berechnung verschiedener physikalischer Konstanten von heterogen Sustanzen. Annal of Physics (Leipzig)
24, 636.

Elsayed, M.A., 1974. Bounds for effective thermal, electrical, and magnetic properties of heterogeneous materials using high order
statistical information. Journal of Mathematical Physics 15, 2001-2015.

Hashin, Z., Shtrikman, S., 1962. A variational approach to the theory of the elastic behaviour of polycrystals. Journal of Mechanics
and Physics of Solids 10, 343-352.

Hill, R., 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society A 65, 349-354.

Kroner, E., 1980. Graded and perfect disorder in random media elasticity. Journal of Engineering Mechanics Division 106, 889-914.

Landauer, R., 1952. The electric resistance of binary metallic mixtures. Journal of Applied Physics 23, 779-784.

Landolt-Bornstein, 1979. Group III: Crystal and solid state physics, vol. 11. Springer-Verlag.

McCoy, J.J., 1981. Macroscopic response of continua with random microstructure. In: Nemat-Nasser, S. (Ed.), Mechanics today,
vol. 6. Pergamon Press, pp. 1-40.

Miller, M.N., 1969. Bounds for the effective elastic bulk modulus of heterogeneous materials. Journal of Mathematical Physics 10,
2005-2013.

Milton, G.W., Kohn, R.V., 1988. Variational bounds on the effective moduli of anisotropic composites. Journal of Mechanics and
Physics of Solids 36, 597-629.

Norris, A.N., 1985. A differential scheme for the effective moduli of composites. Mechanics of Materials 4, 1-16.

Pham, D.C., 1993. Bounds on the effective shear modulus of multiphase materials. International Journal of Engineering Science 31,
11-17.

Pham, D.C., 1994. Bounds for the effective conductivity and elastic moduli of fully-disordered multicomponent materials. Archive for
Rational Mechanics and Analysis 127, 191-198.

Pham, D.C., 1996. On macroscopic conductivity and elastic properties of perfectly-random cell composites. International Journal of
Solids and Structures 33, 1745-1755.

Pham, D.C., 1997. Elastic moduli of perfectly-random polycrystalline aggregates. Philosophical Magazine A 76, 31-44.

Pham, D.C., 1998. Conductivity of realizable effective medium intergranularly random and completely random polycrystals against the
bounds for isotropic and symmetrically random aggregates. Journal of Physics: Condensed Matter 10, 9729-9735.

Pham, D.C., 2000a. Bounds on the uncertainty of the electrical, thermal and magnetic properties of completely random cell
polycrystals. Physical Review B 61, 1068-1074.

Pham, D.C., 2000b. Uncertainty limits for the macroscopic elastic moduli of random polycrystalline aggregates. Journal of Applied
Physics 88, 1346-1355.

Pham, D.C., 2001. Uncertainty ranges for the macroscopic resistivities and permeabilities of random polycrystalline aggregates.
Physical Review B 64, 104205.

Pham, D.C., Phan-Thien, N., 1998. Bounds and extremal elastic moduli of isotropic quasi-symmetric multicomponent materials.
International Journal of Engineering Science 36, 273-281.

Phan-Thien, N., Milton, G., 1983. New third-order bounds on the effective moduli of N-phase composites. Quarterly of Applied
Mathematics XLI, 59-74.

Reuss, A., 1929. Berechnung der fliebgrenze von mischkristallen auf grund der plastizitatzsbedingung fur einkristalle. Zeitschrift fiir
Angewante Mathematik und Mechanik 9, 49.

Sermergor, T.D., 1977. Theory of elasticity of micro-inhomogeneous media. Nauka, Moscow.

Silnutzer, N., 1972. Ph.D. Thesis, U. Pensylvania, Philadelphia.

Voigt, W., 1928. Lehrbuch der krystallphysik. Teuber, Leizig.

Warra, H.H., Koch, H., Kroner, E., 1977. Journal of Material Science Society of Japan 14 (2), 131.

Watt, J.P., Peselnick, L., 1980. Clarification of the Hashin—Shtrikman bounds on the effective elastic moduli of polycrystals with
hexagonal, trigonal, and tetragonal symmetries. Journal of Applied Physics 51, 1525-1531.

Williemse, M.W.M., Caspers, W.J., 1979. Electrical conductivity of polycrystalline materials. Journal of Mathematical Physics 20,
1824-1831.

Zeller, R., Dederichs, P.H., 1973. Elastic constants of polycrystals. Physica Status Solidi B 55, 831-842.



	Asymptotic estimates on uncertainty of the elastic moduli of completely random trigonal polycrystals
	Introduction
	Upper and lower bounds
	The aggregate of trigonal crystals
	The uncertainty and asymptotic estimates
	Acknowledgements
	Appendix A
	Appendix B
	References


